
HOW I CANCAN
Andrew Briening (abriening)

NOT AUTHENTICATION

• HTTP 1.1 Spec

• Authorization Header and "401 Unauthorized" are inaccurate

• Should be Authentication

•Devise, Authlogic, OmniAuth, Sorcery, Clearance, or
ActiveModel::SecurePassword with
ActionController ::HttpAuthentication

AUTHORIZATION

• 403 Forbidden

• CanCan, Declarative Authorization, and a sharp drop-off to
other solutions

• https://www.ruby-toolbox.com/categories/rails_authorization

CANCAN

• https://github.com/ryanb/cancan

•No runtime dependencies

•Decoupled from Rails, but includes plenty of helpers

• http://railscasts.com/episodes/192-authorization-with-cancan

https://github.com/ryanb/cancan
https://github.com/ryanb/cancan
http://railscasts.com/episodes/192-authorization-with-cancan
http://railscasts.com/episodes/192-authorization-with-cancan

INSTALL CANCAN

• Authentication & current_user should already exist

• gem ‘cancan’

• bundle install

• rails g cancan:ability

ABILITY

class Ability
 include CanCan::Ability

 def initialize(user)
 # ...
 end
end

ABILITIES

• Role based?

• Type based?

• Anything-you-want based?

EXAMPLES

class Ability
 include CanCan::Ability

 def initialize(user)
 user ||= User.new # guest user

 if user.role? :admin
 can :manage, :all
 else
 can :read, :all
 can :create, Comment
 can :update, Comment do |comment|
 comment.user == user
 end
 end
 end
end

EXAMPLES
class Ability
 include CanCan::Ability

 def initialize(user)
 user ||= User.new # guest user

 admin if user.role?(:admin)
 moderator if user.role?(:moderator)
 translator if user.role?(:translator)
 end

 def admin
 can :manage, :all
 end

 def moderator
 # ...
 end

 def translator
 # ...
 end
end

EXAMPLES

class Ability
 include CanCan::Ability

 module Admin
 def apply_rules
 # ...
 end
 end

 def initialize(user)
 user ||= User.new # guest user

 extend Admin if user.role?(:admin)
 # ...
 apply_rules if respond_to? :apply_rules
 end
end

CHECKING ABILITIES

Ability.new(@user).can?(:destroy, @project)
Ability.new(@user).cannot?(:destroy, @project)

controller instance methods
authorize! :read, @article

def authorize!(*args)
 @_authorized = true
 current_ability.authorize!(*args)
end

controller class methods
load_and_authorize_resource

load_resource

authorize_resource

check_authorization

CHECKING ABILITIES
before
.form-actions
 = link_to t('.back'), worlds_path
 = link_to t('.edit'), edit_world_path(@world)
 = link_to t('.destroy'), world_path(@world), :method => "delete" ...

after
.form-actions
 - if can? :read, World
 = link_to t('.back'), worlds_path
 - if can? :update, @world
 = link_to t('.edit'), edit_world_path(@world)
 - if can? :destroy, @world
 = link_to t('.destroy'), world_path(@world), :method => "delete" ...

ALIASES & SPECIAL CASES

:manage, :all, :read, :create, :update

def matches_action?(action)
 @expanded_actions.include?(:manage) || ...
end

def matches_subject?(subject)
 @subjects.include?(:all) || ... || ...
end

def default_alias_actions
 {
 :read => [:index, :show],
 :create => [:new],
 :update => [:edit],
 }
end

BEWARE MANAGE ALL

in ability.rb
 can :manage, World, :owner => { :id => user.id }

in controller
def explode
 authorize! :explode, @world
 @world.explode # ;)
end

Can inadvertently allow actions

BEWARE MANAGE ALL

in ability.rb
 can [:create, :read, :update], World, :owner => { :id => user.id }
in controller
 authorize! :explode, @world # the world is safe again

“Deny, Allow” by explicitly defining each action

Acceptance testing is important

BEWARE MANAGE ALL

in ability.rb
 can [:create, :read, :update, :destroy], World
in controller
 authorize! :manage, @world # nope!

authorize!(:manage) and can?(:manage, ...) only work if the
ability was explicitly defined as can(:manage, ...)

USE INSTANCES WHEN
POSSIBLE

rule
can :create, World, owner: { id: @user }

This doesn't work, can? usage is not reciprocal with can rules
:owner is silently ignored
can? :create, World, owner: { id: @user } # yep
can? :create, World, owner: { id: @other_user } # that's ok

Pass in an instantiated record
can? :create, World # yes, surprisingly
can? :create, World.new(owner: @user) # yep
can? :create, World.new(owner: @other_user) # nope!

KEEP IT RESTFUL

in ability.rb
 can [:create, :read, :update, :destroy], World

Stick to CRUD methods, :create, :read, :update, :destroy

seems intuitive
in ability.rb
 can :play, World

check in worlds controller
 def play
 can? :play, @world
 # ...
 end

but gets awkward; how do I "unplay"?
 can :stop_server, World, server: { world: { owner: {id: user} } }
 can? :stop_server, @world

better
 can [:create, :destroy], Server, world: {owner: {id: user}}

check
 can? :create, Server.new(@world)
 can? :destroy, @server

KEEP IT RESTFUL

CONTROLLER HELPERS
class methods
load_and_authorize_resource

load_resource

authorize_resource

check_authorization

• Helpful in getting things setup fast, DRY, but ...

• Breaks single responsibility

• Adds complexity when need to override method of loading

CONTROLLER HELPERS
world_controller, before
 def index
 authorize! :read, World
 @worlds = worlds.all
 respond_with @worlds
 end

 def show
 @world = worlds.find(params[:id])
 authorize! :read, @world
 respond_with @world
 end

world_controller, after
 load_and_authorize_resource
 def index
 respond_with @worlds
 end

 def show
 respond_with @world
 end

ACCESSIBLE BY

World.accessible_by current_ability

chain with scopes
World.active.accessible_by current_ability

chain with collection associations
@world.players.accessible_by(current_ability)

converted to scope
can :update, World, owner: user

Boom! Can’t use block syntax and accessible_by
can :update, World do |world|
 world.owner == user
end

CANCAN::ACCESSDENIED

class ApplicationController < ActionController::Base

 def authorization_error
 # 403 Forbidden response
 respond_to do |format|
 format.html{ render '/rescues/access_denied', :status => 403 }
 format.xml{ render :xml => 'Access Denied', :status => 403 }
 format.json{ render :json => 'Access Denied', :status => 403 }
 end
 end

 rescue_from CanCan::AccessDenied, :authorization_error
end

410 GONE

